
The C Programming Language

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

The C Programming Language

• A high-level language for writing low-level programs

• Allows machine-independent systems programming

• Operators correspond to popular machine instructions

• Easy to provide efficient compilers

A Little Bit of History

• 1969-1972: Developed at AT&T Bell Labs by Dennis Ritchie
– Predecessor B, used word-based addressing.

– C used with development of Unix OS

• 1978: “The C Programming Language” book
by Kernighan and Ritchie

• 1989: ANSI/ISO Standard C89
– Function prototypes, void, enumerations, ...

• 1999: ANSI/ISO Standard C99
– Inline functions, complex numbers, variable length arrays, ...

Comparison to Java

• No objects

• Structs, unions and enumerations instead.

• The three most important things in C: (1) pointers, (2) pointers, (3) pointers.

• Distinction between structure and pointer to structure.

• Pointer arithmetic. Array/pointer equivalence.

• Strings are arrays of small characters, null terminated.

• C pre-processor

• Setjmp/longjmp functions instead of try/throw.

• register, typedef, volatile, const

• Sizes of integers. Signed and unsigned arithmetic.

• Different IO

• Explicit memory management. Sizeof. Bit-fields.

Arithmetic
• There are several integer types providing different sizes of

numbers and both signed and unsigned arithmetic.

• These are:
char signed char unsigned char just a kind of integer

short int unsigned short int

int unsigned int

long int unsigned long int

long long int unsigned long long int

If the word “int” is left out, e.g. unsigned short, then it is assumed.

• The sizes of these are not specified. It is merely required that

sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long long

• This allows integer sizes to match those provided by the particular machine.

• This illustrates C’s philosophy of using flexibility to gain efficiency.

No Objects: Struct-s Instead

• “struct”s allow values to be grouped together,
but provide no constructors or methods.

struct farm_animal {
int number_of_feet;
int number_of_wings;
double weight;

};

struct farm_animal rover, porky, daffy;

rover.number_of_feet = 4; daffy.number_of_feet = 2;
rover.number_of_wings = 0; daffy.number_of_wings = 2;
rover.weight = 5.8; daffy.weight = 2.5;

Unions

• “union”s allow the same area of memory to be used for
different things at different times.

union some_number {
int n;
double d;

};

union some_number myNum;

myNum.n = 2;
myNum.d = 3.7; /* overwrites myNum.n */

• These are easy to mis-use.

Enums

• “enum”s allow symbolic names to be given to a set of integers.

enum colour {
RED,
GREEN,
BLUE = 9

};

Then RED has value 0, GREEN value 1, BLUE value 9

The Thing vs A Pointer to the Thing

• The “&” operator gives the address (location in memory) of something.

• The “*” operator returns the contents of what is at a location.

• These are typed. A pointer to a double vs a pointer to a byte.

• A pointer to a value of type T is declared with “T *”

struct farm_animal *p_porky = &porky;
struct farm_animal *p_daffy = &daffy;

4 4

5.8

2 2

2.5

The Thing vs A Pointer to the Thing

• Assignment of structures copies the data
from the source structure to the destination structure.

daffy = porky;

Before:

After:

4 4

5.8

4 4

5.8

4 4

5.8

2 2

2.5

The Thing vs A Pointer to the Thing

• Assignment of pointers copies the data
from the source pointer to the destination pointer.

p_daffy = p_porky;

Before:

After:

4 4

5.8

2 2

2.5

4 4

5.8

2 2

2.5

The Thing vs A Pointer to the Thing
• In general, assignment copies data from the source to the destination,

regardless of whether it is a pointer, structure, or other type.

• These may be used in combination.

p_porky = &daffy; /* p_porky gets the address of daffy */
porky = *p_daffy; /* porky gets what p_daffy points to */

Arrays

• An array of a certain size can be declared using [].

int a[10];

• It is not necessary to call new to create this.

Pointer Arithmetic

• The addresses of array elements are &(a[0]), &(a[1]), etc.

• You can add an integer to a pointer to get the location
of another element.

&(a[3]) == &(a[0]) + 3

Pointer Arithmetic

• You can use the expression a in place of &(a[0]).

• Then &(a[3]) == a + 3 .

a a+1 a+2 a+3 a+4 a+5 a+6 a+7 a+8 a+9

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Pointer Arithmetic

• Indeed, a[i] is really just a shorthand for *(a+i)

• You could write *(a+2) = *(a+5) instead of a[2] = a[5]

Pointer Arithmetic
• Since you can add integers to pointers, then p++ and p--

make sense.

p++ means “use the value of p, then afterward do p = p + 1”

Strings

• Strings in C are null-terminated arrays of characters.

“hello” is the array [‘h’, ‘e’, ‘l’, ‘l’, ‘o’, 0]

• It is common to see code like

char *s = “hello”;

The C Preprocessor
• Because integers and bits in integers are used for so many

things, and

because compiler technology was not as advanced
when C was defined,

the language provides a textual-substitution “preprocessor”
to allow symbolic names to be used where integers are needed.

#define READ_BIT (1<<7)
#define MAX(a,b) ((a) > (b) ? (a) : (b))

a |= READ_BIT;
c = MAX(sizeof(a), 12);

The C Preprocessor

• The C Preprocessor allows text from other files to be
included in a program and conditional inclusion of text.

#include <stdio.h>

#if defined(MAXPATH)
static char pathname[MAXPATH];
#else
static char pathname[1000];
#endif

Type Definitions

• New type names may be introduced with “typedef”.

typedef int hash_code;
typedef struct node *pnode;

hash_code h1, h2;
pnode n1, n2, nodes[10];

• These are abbreviations and are equivalent to the old types.

Header Files

• Typically for each .c file or library one will have a .h header file
containing

– Function declarations

– #define-s of related constants

– typedef-s of related types

The Standard IO Library
#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv)

{

FILE *fin, *fout;
char c, *infile = “the-input”, *outfile = “the-output”;

fin = fopen(infile, “r”);
fout = fopen(outfile, “w”);
if (fin == NULL || fout == NULL) {

fprintf(stderr, “Cannot open %s or %s\n”, infile, outfile);

exit(EXIT_FAILURE);

}

while ((c = getc (fin)) != EOF)
putc(c, fout);

fclose(fin);

fclose(fout);

return EXIT_SUCCESS;

}

The Standard IO Library – Part II
• Several functions. Most important:
printf(fmt, ...);
fprintf(FILE *, fmt, ...);
sprintf(char *, fmt, ...);

fgets(char *buf, int buf_size, FILE *infile);

• Output format codes:
– %s : corresponding argument is a string

– %c: corresponding argument is an integer to be displayed as a character

– %d, %o, %x: corresponding argument is an integer to be displayed in decimal/octal/hex

Memory Management
• For dynamically managed structures use “malloc” and “free”

#include <stdlib.h>

void *malloc(size_t nbytes);

void free(void *);

Memory Management

struct cell { int value; struct cell *next; };

struct cell *makeTheList(int start, int end) {
struct cell *p = 0;

for (; end >= start; end--) {

struct cell *hd = (struct cell *) malloc(sizeof(struct cell));

if (hd == NULL) { }
hd->value = end; hd->next = p;

p = hd;

}

return p;

}

void freeTheList(struct cell *p) {

while (p) {

struct cell *next = p->next;

free(p);

p = next;
}

}

Conclusions

• C lets you write efficient, machine-dependent, low-level
programs that use fixed size buffers.

• C also lets you write efficient, portable, safe, high-level
programs that manage structures of arbitrary size.

• It is relatively easy to write efficient C code for small or
medium-sized programs.

• It is relatively hard to write giant programs or
maintain over time.

• If you think you understand C, check out http://www.ioccc.org/

